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Question: Is there any 
information processed when 
the stimulus is not 
consciously perceived? 

Response with necked eye: yes!
How to quantify the evidence? 

Three hypotheses (=models) about the data:
M1: the responses are random (= uniform distribution) 
M2: the responses are informed, more or less 
concentrated around the correct answer (Gaussian 
distribution with unknown variance)
M3: an unknown fraction of random responses, the 
others are informed (with unknown variance)

What is the fraction of random guesses 
in the 'Unseen' trials?

Is it more likely that there is something 
(M3) in 'Unseen' trials rather than 
nothing (M1)?

Starting with an example

(data & paradigm: Darinka Trübutschek et al.)



  

Topics addressed:

● The notion of conditional probabilities and Bayes' rule
● Characterization of a model (e.g. guessing unknown 

parameters) with Bayesian statistics
● Quantifying the evidence supporting a model (or a 

hypothesis) with Bayesian statistics
● Simpler is better: Bayesian statistics automatically 

penalize complexity
● Bayesian model comparison and hypothesis testing



  

Conditional probability and Bayes' rule: 
going back and forth between 
observations and assumptions 

We often (if not always) estimate plausibility given some prior information and / or 
assumptions.

In probability theory, this corresponds to conditional probabilities. 
It can be linked to the 'If …, then …' reasoning.

If he is a trader, then he is likely to be rich: 
p(rich | trader) = high correlation

If it rains, then the ground is likely to be wet: 
p(wet | rain) = high physical causation

If it is a square then it is a rectangle: 
p(rectangle | square)=1 nested properties

Conditional probabilities characterize an epistemic dependence, not a causal link. The 
symmetry of this dependence is known as Bayes' rule:

p (A∣B)=
p (A , B)

P(B)

= p (B∣A)
p(A)

p (B)

Bayes' rule affords inference about assumptions given actual data:
p(assumption | observations) ~ p(observations | assumption) * p(assumption)



  

Model parameters and data: going back and 
forth with Bayes' rule

The model
A simple example: Model2
A Gaussian process
with mean μ=0, std = σ2

Likelihood of observations:

Observed data: y=36° 

(For a collection of data: y
1
=36°, y

2
=0°, ..., use the product:

p( y1, y2, ... ,σ
2
∣μ=0)∝ p( y1∣μ=0,σ 2

)... p( y2∣μ ,σ2
) p(σ

2
)

p( y∣Gaussian ,μ=0,σ2
)=N (μ=0,σ2

)

Go the other way around with Bayes' rule

p(σ2∣Gaussian ,μ=0, y )=p( y∣Gaussian ,μ=0,σ 2) p (σ2∣Gaussian)
1

p( y )

Prior knowledge
about σ2

(may be constant)

Likelihood of the data
assuming σ2

Posterior knowledge
about σ2

constant

σ2

σ=0.4
σ=0.75
σ=1
σ=1.5
σ=2.5

y



  

Bayesian inference of the unknown 
parameters given the observed data

Simulated data
(100 trials)

Characteristics Best Fit of M3
(fits proportion + σ)

Maximum A Posterior
value

20% informed 
responses (σ=0.5)
+ 80% random guesses

95% informed 
responses (σ=0.5)
+ 5% random guesses

50% informed 
responses (σ=0.5)
+ 50% random guesses

Proportion=0.08
σ=0.45

Proportion=0.54
σ=0.67

Proportion=0.96
σ=0.55



  

Model and data: going back and forth with 
Bayes' rule (again)

Following Bayes rule:
p(M1 | y) ~ p(y | M1)p(M1)

The dependence between the posterior and the data depends 
on p(y | M1), known as model evidence, a.k.a. marginal 
likelihood

In the absence of informative prior about models: p(M1) = 
p(M2) = constant and the ratio of posterior model probabilities 
is determined by the ratio of model evidence.

The posterior probability of the model quantifies 
the plausibility of this model given some data: p(M1 | y)

It allows direct comparison between models:
 e.g. 'Given our data, model #1 is 10 times more probable than model #2'



  

p(data | model) quantifies the model evidence
irrespective of any unknown parameters

What we want: p( y∣Gaussian ,μ=0)

What we know:

The trick: get rid of the parameter σ by averaging over all possible values (marginalization)

p( y ,σ2∣Gaussian ,μ=0)=p( y∣Gaussian,μ=0,σ2
) p(σ

2∣Gaussian)

p( y∣Gaussian ,μ=0)=∫ p( y ,σ 2∣Gaussian,μ=0)dσ

=∫ p( y∣Gaussian,μ=0,σ2) p(σ2∣Gaussian)dσ

Averaging,
uniform prior

Same logic across our 3 models:
M1: the responses are random (= uniform distribution) 
M2: the responses are informed, more or less concentrated around 
the correct answer (Gaussian distribution with unknown variance)
M3: an unknown fraction of responses are random, and the other 
informed (with unknown variance)

No unknown parameter

1 unknown parameter

2 unknown parameters

Model evidence

p( y ,σ2∣Gaussian ,μ=0)

Back to the example of M2, a Gaussian process with 0 mean and unknown variance.



  

The model evidence allows direct 
comparison between models

Simulated dataCharacteristics Best Fit
M1, M2, M3

Model evidence
(log scale)

 M1 -304
 M3 -338
 M2 -1737

 M2 -212
 M3 -235
 M1 -304

M3 -286
M1 -304
M2 -871

M1 is e34 ~ 1014 times 
more likely than M3

M2 is e23 ~ 109 times 
more likely than M3

M3 is e18 ~ 107 times 
more likely than M1

20% informed 
responses (σ=0.5)
+ 80% random guesses

95% informed 
responses (σ=0.5)
+ 5% random guesses

50% informed 
responses (σ=0.5)
+ 50% random guesses



  

Model evidence and related concepts for 
model comparison

p(M1∣y)
p(M2∣y )

=
p( y∣M1)
p ( y∣M2)

p (M1)
p(M2)

Known as:
Odds
Posterior odds

Known as:
Bayes factor
Evidence ratio
Marginal likelihood ratio

Known as:
Prior odds

The model evidence p(y|M) can be difficult to compute exactly. Approximations include:
- The Bayesian Information Criterion
- The Akaike Information Criterion
- The Watanabe-Akaike information Criterion



  

Simpler is better

The 'simpler is better' preference is also called the principle of parsimony, or 
Ockham's razor

Model #1

Model #2
A preference for specific explanations

There is a conflict between the principle of parsimony and the selection of models 
based on the maximization of likelihood (= minimization of errors)

Black fit: Y = β
0
+β

1
X + error

Red fit:   Y = β
0
+β

1
X + β

2
X2 + β

3
X3 + β

4
X4 + β

5
X5 + error

More free parameters (almost always) ensure a better fit.
→ the criterion of likelihood maximization should be corrected 
to penalize complexity



  

Automatic penalization of complexity with 
the Bayesian approach

p( y ,σ2∣M2)

Joint probability

Black:

(fictitious example)

3-d plot: p( y ,π ,σ 2∣M3)

Standard deviation 

of Gaussian (σ)
Proportion of Gaussian trials (π)

Max: 0.016
Mean: 0.0001

Max: 0.008
Mean: 0.002

Here:
The maximum of the distribution (= maximal accuracy of fit) is larger for the more complex model
The mean of the distribution (= model evidence) is larger for the simpler model.

p( y∣M2)=∫ p( y∣M2 ,σ2
) p(σ

2∣M2)dσ

p( y∣M3)=∫∫ p( y∣M3 ,σ2 ,π) p(σ
2 ,π∣M3)dσ dπ

Integration over the parameter space penalizes complexity: 
the model evidence gets 'diluted' in larger parameter space



  

Bayesian inference with subject and group 
levels: hierarchical models

● Solution 1: a single hierarchical model, with 
the subject level nested in the group level. 
Since there is only one model, it provides a 
group-level Bayes factor

● Solution 2: proceed with 2 steps
– Fit the data at the subject level and collect model 

evidence for each subject and each model

– Perform a group-level analysis.
● Product of subject-level model evidence = fixed-effect 

analysis (but may be driven by a single subject)
● Use a random-effect approach to compute the 

exceedance probability for each model (= probability 
that this more is more likely than any other in the 
general population). See Stephan, NeuroImage 2009.



  

Binary hypothesis testing as a particular 
case of Bayesian model comparison

● The classical t-test
– H0 (null-model): the mean is exactly 0

– H1 (alternative model): the mean is different from 0 (and unknown)

● Larger t-values provide evidence to reject the null-model
● The logic seems similar to Bayesian Model Comparison. → See 

Valentin Wyart's presentation for a worked-out example of 
'Bayesian' t-test.



  

The advantage of Bayesian over 
classical hypothesis tests

What the classical p-value really is:
The probability of obtaining a test statistic at least as extreme as the one that 
was observed, assuming that the null hypothesis is true and the data were 
generated according to a known sampling plan (Wagenmakers 2015)

So... smaller p-values indicate stronger evidence that there is an 
effect?
→ no, they indicate more evidence against the null hypothesis.
So... larger p-value indicates there is no effect?
→ no, they indicate the data are not extreme under the null 
hypothesis.
Well... p-values quantify some statistical evidence??
→ no. The evidence against the null is over-estimated and the bias 
increases with the sample size (Wagenmakers 2007)

By contrast, Bayesian statistics:
→ are easier to interpret: 'given my data, it is 100 times more likely that there is an effect rather than 
no effect'
→ can quantify symmetrically the absence of effect
→ are less biased by sample size
→ can take into account prior knowledge
→ can quantify the plausibility of hypotheses tailored to specific designs.



  

Practical recommendations

● For simple use, e.g. t-test, regression... an online tool to compute 
bayesian statistics: http://pcl.missouri.edu/bayesfactor  

● Fit of linear models, existing codes include the Matlab function 
spm_PEB.m from the SPM toolbox: http://www.fil.ion.ucl.ac.uk/spm/ 
(this function will estimate the fit of your linear model, and the model 
evidence for model comparison; also allows hierarchical models)

● More sophisticated models
– You can make your own codes. Several toolboxes facilitate tricky Bayesian 

computations, such as Markov Chain Monte Carlo sampling: WinBUG (in R); 
PyMC (Python); Stan (C++, interface with R, Python, Matlab...); Church (a 
programming language for probabilistic generative models 
https://probmods.org)

–  A Matlab toolbox for stochastic models: 
https://code.google.com/p/mbb-vb-toolbox/ 

http://pcl.missouri.edu/bayesfactor
http://www.fil.ion.ucl.ac.uk/spm/
https://probmods.org/
https://code.google.com/p/mbb-vb-toolbox/


  

Selected references
● A graphical illustration of Bayes' rule

– Puga & Altman, 2015, Nature Method, Bayes' Theorem

● A general and very good texbook for basic and advanced Bayesian data analysis:
– Gelman, Carlin, Stern, Dunson, Vehtari, Rubin, 2014 (Third Edition) Bayesian Data Analysis

● Troubles with classical t-tests, and a Bayesian solution
– Wagenmakers, 2007, Psychonomic Bulletin & Review, A practical solution to the pervasive 

problems of p values

● A variational Bayes approximation of model evidence + group-level analysis
– Stephan, Penny, Daunizeau, Moran, Friston,  2009, NeuroImage, Bayesian model selection for 

group studies

– Penny, 2012, NeuroImage, Comparing Dynamic Causal Models using AIC, BIC and Free Energy

● Bayesian t-test (companion paper of http://pcl.missouri.edu/bayesfactor)
– Rouder, Speckman, Sun & Morey, 2009, Psychonomic Bulletin & Review, Bayesian t-tests for 

accepting and rejecting the null hypothesis

● Joshua Tenenbaum & Noah Goodman on-line textbook for probabilistic models 
(adapted to cognitive science):
– https://probmods.org 

http://pcl.missouri.edu/bayesfactor
https://probmods.org/
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