Model comparison with Bayesian statistics

Florent Meyniel CEA-Saclay ENP – May 21st 2015

Starting with an example

Three hypotheses (=models) about the data:

M1: the responses are random (= uniform distribution)

M2: the responses are informed, more or less concentrated around the correct answer (Gaussian distribution with *unknown* variance)

M3: an *unknown* fraction of random responses, the others are informed (with *unknown* variance)

What is the fraction of random guesses in the 'Unseen' trials?

Is it more likely that there is something (M3) in 'Unseen' trials rather than nothing (M1)?

Topics addressed:

- The notion of conditional probabilities and Bayes' rule
- Characterization of a model (e.g. guessing unknown parameters) with Bayesian statistics
- Quantifying the evidence supporting a model (or a hypothesis) with Bayesian statistics
- Simpler is better: Bayesian statistics automatically penalize complexity
- Bayesian model comparison and hypothesis testing

Conditional probability and Bayes' rule: going back and forth between observations and assumptions

We often (if not always) estimate plausibility given some prior information and / or assumptions.

```
In probability theory, this corresponds to conditional probabilities.

It can be linked to the 'If ..., then ...' reasoning.

If he is a trader, then he is likely to be rich:

p(rich | trader) = high correlation

If it rains, then the ground is likely to be wet:

p(wet | rain) = high physical causation

If it is a square then it is a rectangle:

p(rectangle | square)=1 nested properties
```

Conditional probabilities characterize an epistemic dependence, not a causal link. The symmetry of this dependence is known as Bayes' rule:

$$p(A|B) = \frac{p(A,B)}{P(B)}$$
$$= p(B|A) \frac{p(A)}{p(B)}$$

Bayes' rule affords **inference** about assumptions given actual data: p(assumption | observations) ~ p(observations | assumption) * p(assumption)

Model parameters and data: going back and forth with Bayes' rule

Likelihood of observations:

 $p(y|Gaussian, \mu=0, \sigma^2)=N(\mu=0, \sigma^2)$

The **model**A simple example: Model2
A Gaussian process
with mean μ =0, std = σ ²

Go the other way around with Bayes' rule

$$p\left(\sigma^{2}|\textit{Gaussian}\,,\mu\!=\!0,y\right)\!=\!p\left(\left.y|\textit{Gaussian}\,,\mu\!=\!0,\sigma^{2}\right)p\left(\sigma^{2}|\textit{Gaussian}\right)\frac{1}{p\left(\left.y\right)}$$

Likelihood of the data assuming σ²

Prior knowledge constant about σ² (may be constant)

Observed data: y=36°

(For a collection of data: y_1 =36°, y_2 =0°, ..., use the product: $p(y_1, y_2, ..., \sigma^2 | \mu = 0) \propto p(y_1 | \mu = 0, \sigma^2) ... p(y_2 | \mu, \sigma^2) p(\sigma^2)$

Bayesian inference of the unknown parameters given the observed data

-180

-90

90

180

-90

-180

0

90

180

Model and data: going back and forth with Bayes' rule (again)

The **posterior probability of the model** quantifies the plausibility of this model given some data: p(M1 | y)

It allows direct comparison between models: e.g. 'Given our data, model #1 is 10 times more probable than model #2'

Following Bayes rule: $p(M1 | y) \sim p(y | M1)p(M1)$

The dependence between the posterior and the data depends on p(y | M1), known as **model evidence**, a.k.a. marginal likelihood

In the absence of informative prior about models: p(M1) = p(M2) = constant and the ratio of posterior model probabilities is determined by the ratio of model evidence.

p(data | model) quantifies the model evidence irrespective of any unknown parameters

Back to the example of M2, a Gaussian process with 0 mean and unknown variance.

What we want: $p(y|Gaussian, \mu=0)$

What we know: $p(y,\sigma^2|Gaussian,\mu=0)=p(y|Gaussian,\mu=0,\sigma^2)p(\sigma^2|Gaussian)$

The trick: get rid of the parameter σ by averaging over all possible values (marginalization)

$$p(y|Gaussian, \mu=0) = \int p(y, \sigma^2|Gaussian, \mu=0) d\sigma$$

=
$$\int p(y|Gaussian, \mu=0, \sigma^2) p(\sigma^2|Gaussian) d\sigma$$

Same logic across our 3 models:

M1: the responses are random (= uniform distribution)

M2: the responses are informed, more or less concentrated around the correct answer (Gaussian distribution with *unknown* variance)

M3: an *unknown* fraction of responses are random, and the other informed (with *unknown* variance)

✓ No unknown parameter

■ 1 unknown parameter

✓ 2 unknown parameters

The model evidence allows direct comparison between models

Model evidence and related concepts for model comparison

The model evidence p(y|M) can be difficult to compute exactly. Approximations include:

- The Bayesian Information Criterion
- The Akaike Information Criterion
- The Watanabe-Akaike information Criterion

Simpler is better

The 'simpler is better' preference is also called the **principle of parsimony**, or Ockham's razor

A preference for specific explanations

There is a conflict between the principle of parsimony and the selection of models based on the **maximization of likelihood** (= minimization of errors)

Black fit:
$$Y = \beta_0 + \beta_1 X + \text{error}$$

Red fit: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 X^4 + \beta_5 X^5 + \text{error}$

More free parameters (almost always) ensure a better fit.

→ the criterion of likelihood maximization should be corrected to **penalize complexity**

Automatic penalization of complexity with the Bayesian approach

$$p(y|M2) = \int p(y|M2,\sigma^2) p(\sigma^2|M2) d\sigma$$

$$p(y|M3) = \int \int p(y|M3,\sigma^2,\pi) p(\sigma^2,\pi|M3) d\sigma d\pi$$

Here:

The maximum of the distribution (= maximal accuracy of fit) is larger for the more complex model. The mean of the distribution (= model evidence) is larger for the simpler model.

Integration over the parameter space penalizes complexity: the model evidence gets 'diluted' in larger parameter space

Bayesian inference with subject and group levels: hierarchical models

- Solution 1: a single hierarchical model, with the subject level nested in the group level.
 Since there is only one model, it provides a group-level Bayes factor
- Solution 2: proceed with 2 steps
 - Fit the data at the subject level and collect model evidence for each subject and each model
 - Perform a group-level analysis.
 - Product of subject-level model evidence = fixed-effect analysis (but may be driven by a single subject)
 - Use a random-effect approach to compute the exceedance probability for each model (= probability that this more is more likely than any other in the general population). See Stephan, NeuroImage 2009.

Binary hypothesis testing as a particular case of Bayesian model comparison

- The classical t-test
 - H0 (null-model): the mean is exactly 0
 - H1 (alternative model): the mean is different from 0 (and unknown)
- Larger t-values provide evidence to reject the null-model
- The logic seems similar to Bayesian Model Comparison. → See Valentin Wyart's presentation for a worked-out example of 'Bayesian' t-test.

The advantage of Bayesian over classical hypothesis tests

What the classical **p-value** really is:

The probability of obtaining a test statistic at least as extreme as the one that was observed, assuming that the null hypothesis is true and the data were generated according to a known sampling plan (Wagenmakers 2015)

So... smaller p-values indicate stronger evidence that there is an effect?

→ no, they indicate more evidence against the null hypothesis.

So... larger p-value indicates there is no effect?

→ no, they indicate the data are not extreme under the null hypothesis.

Well... p-values quantify some statistical evidence??

→ no. The evidence against the null is over-estimated and the bias increases with the sample size (Wagenmakers 2007)

By contrast, Bayesian statistics:

- → are easier to interpret: 'given my data, it is 100 times more likely that there is an effect rather than no effect'
- → can quantify symmetrically the absence of effect
- → are less biased by sample size
- → can take into account prior knowledge
- → can quantify the plausibility of hypotheses tailored to specific designs.

Practical recommendations

- For simple use, e.g. t-test, regression... an online tool to compute bayesian statistics: http://pcl.missouri.edu/bayesfactor
- Fit of linear models, existing codes include the Matlab function spm_PEB.m from the SPM toolbox: http://www.fil.ion.ucl.ac.uk/spm/ (this function will estimate the fit of your linear model, and the model evidence for model comparison; also allows hierarchical models)
- More sophisticated models
 - You can make your own codes. Several toolboxes facilitate tricky Bayesian computations, such as Markov Chain Monte Carlo sampling: WinBUG (in R); PyMC (Python); Stan (C++, interface with R, Python, Matlab...); Church (a programming language for probabilistic generative models https://probmods.org)
 - A Matlab toolbox for stochastic models: https://code.google.com/p/mbb-vb-toolbox/

Selected references

- A graphical illustration of Bayes' rule
 - Puga & Altman, 2015, Nature Method, Bayes' Theorem
- A general and very good texbook for basic and advanced Bayesian data analysis:
 - Gelman, Carlin, Stern, Dunson, Vehtari, Rubin, 2014 (Third Edition) Bayesian Data Analysis
- Troubles with classical t-tests, and a Bayesian solution
 - Wagenmakers, 2007, Psychonomic Bulletin & Review, A practical solution to the pervasive problems of p values
- A variational Bayes approximation of model evidence + group-level analysis
 - Stephan, Penny, Daunizeau, Moran, Friston, 2009, NeuroImage, *Bayesian model selection for group studies*
 - Penny, 2012, NeuroImage, Comparing Dynamic Causal Models using AIC, BIC and Free Energy
- Bayesian t-test (companion paper of http://pcl.missouri.edu/bayesfactor)
 - Rouder, Speckman, Sun & Morey, 2009, Psychonomic Bulletin & Review, *Bayesian t-tests for accepting and rejecting the null hypothesis*
- Joshua Tenenbaum & Noah Goodman on-line textbook for probabilistic models (adapted to cognitive science):
 - https://probmods.org