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Outline of the course 
• Analyzing oscillatory signals 

– 3 fundamentals characteristics 
– The Fourier’s theorems 
– Analytic tools & questions for oscillations 
– Some methodological issues 

• The origin of brain oscillations 
– The single neuron level 
– The two neurons level 
– Network synchronization 
– Network architecture 
– From spikes to sensors 

• Functional implication for cognition 
– A mechanistic account of neural processes 
– Rhythmicity of cognitive processes 
– Case study: beta band oscillations 
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Analyzing oscillatory 
signals 

• Amplitude (A): blue vs. black 
• Phase (ϕ): blue vs. green 
• Frequency (f): blue vs. red 
• NB: the period T = 1/f  
• Complex view and the trigonometric circle 

s(t) = A(t)*[cos(ϕ(t)) + i*sin(ϕ(t))] 

𝑠 = A ∗ sin⁡(𝑡 ∗ 2𝜋𝑓 + ⁡𝜑) 
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Cosinus axis 

Sinus axis 
Length = A 

Angle = ϕ 

Three  aim characteristics 
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Analyzing oscillatory 
signals The Fourier theorems 



• Spectral decomposition (Fourier series) 

– A function g can be decomposed in a unique series of sinusoids 𝑒2𝜋𝑖𝑡𝑝/𝑇
𝑝∈𝕫

 

• 𝑔(𝑡) =  𝑐𝑝 𝑔 𝑒𝑖2𝜋𝑡𝑝/𝑇
𝑝∈ℤ  

• With 𝑐𝑝 𝑓 = ⁡ 𝑓 𝑡 𝑒−𝑖2𝜋𝑡𝑝/𝑇𝑑𝑡/𝑇
𝑇

0
 

• Time-frequency equivalence 
– If g is a function of time (t, second), its Fourier transform is 𝑔  a function of 

frequency (𝜉, Hertz): 𝑔 𝜉 = ⁡ 𝑒−𝑖2𝜋𝑡𝜉𝑔 𝑡 𝑑𝑡 

– g can be reconstructed from 𝑔 : 𝑔 𝑡 = ⁡ 𝑒𝑖2𝜋𝑡𝜉𝑔 𝜉 𝑑𝜉 
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Analyzing oscillatory 
signals The Fourier theorems 
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Analyzing oscillatory 
signals 

 Frequency content at each time point.  
 NB: note the power law, power → 1/fβ 

Time frequency map 

Analytic tools & questions for oscillations 



• FFT (fast Fourier transform) 

– to get the spectral power over a specific time window 

– No phase! 

– ‘per time window’ 

• Hilbert transform 

– S a signal, H its Hilbert transform (complex function),  
such that s = mod(H)*cos(angle(H)) 

– Get the phase & power for a frequency 

– ‘per frequency’ 

• Wavelet analysis 

– Get the phase & power 

– Efficient and simple computational scheme 

– ‘Both per frequency and per time’ 
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Analyzing oscillatory 
signals Analytic tools & questions for oscillations 



Samar et al 1999 Brain & Language 
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Analyzing oscillatory 
signals Analytic tools & questions for oscillations 

Wavelet Analysis 

Power at (f1, t1) 

Power at (f2, t2) 

Phase at (f1, t1) 



• Does a stimulus evoke a specific oscillatory response? 
– What frequency 

– What latency (same vs. different phase = evoked vs. induced) 

• Are two points in the brain oscillating ‘together’?  
– Phase synchronization + same power correlation (spectral coherence) 

– Same modulation of power (power synchrony) 

– Constant phase shift (phase synchrony) 

– Phase & power coupling 
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Analyzing oscillatory 
signals Analytic tools & questions for oscillations 

© Catherine Tallon-Baudry 
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Analyzing oscillatory 

signals Analytic tools & questions for oscillations 



• 1: artifactual oscillations:  
– Stimulation, task 
– muscular artifacts (e.g. high frequency, micro saccades) 
– Volume conduction 
– Frequency dependent gain of the electrode (LFP) 

• 2: Change in the power law: 1/fα noise, α may depend on the behavioral 
state (He, Neuron 2010) 

• 3: Interpret coherence only when both signals really have a peak in their 
power spectrum 

• 4: beware of the time window! the effect should last longer than the time 
window used for the analysis 

• 5: Interpret phase locking only when the signals have exactly the same 
peak frequency 

• 6: Inter-nested rhythms and cross-frequency coupling 
• 7: Causality over distant signals 

– Conduction artifact! 
– Do we have good models of directionality for rhythms? 

• 8: Arbitrary bands in power spectra (δ, θ, α, μ, β, γ: 0-4; 4-8; 8-12; 12-30; 
>30Hz), are still to be given a meaning? (Siegel, Nature Neurosci, 2012) 
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Analyzing oscillatory 
signals Methodological issues 

(XJ Wang Physiol Rev 2010) 
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The origin of brain 
oscillations The single neuron level 

Pacemaker neurons 
- auto-excitable cells with 

a proper frequency. 
- e.g. GABA neurons in the 

medial septum neurons, 
feeds the hippocampus 
with theta rhythms 
(resonance) 

Depolarization (action-potential) 

Sub-threshold activity 

Hyper-polarization 

Actually: few central 
pattern generators 



• The neuron phase response 
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The origin of brain 
oscillations The two neurons level 
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A) Thorough Chemical synapses 
– recurrent excitation of pyramidal neurons with fast synapses (type II cells, cf. prev.)  

=> same phase 

– slow inhibitory interneurons (type I cells, cf. prev.)  
=> anti-phase correlation 

– Fast and strong excitation + slow or delayed inhibition feedback loop  
=> gamma oscillation 

– Synaptic filtering (facilitation or depression) 
=> preferred frequency 
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The origin of brain 
oscillations Network synchronization 

heterogeneity of neurons  
 heterogeneity of rhythms 
 

Thompson J Comput. Neurosci 2003 



• B) Electric coupling 

– Gap junctions: fast and bidirectional = Holy Grail of 
oscillations 

– But: very localized 

– Ex. Some GABA interneurons 

– important during early stage of development with crucial 
properties for transient developmental brain activity 
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The origin of brain 
oscillations Network synchronization 

Mancilla J Neurosci. 2007 



• C) Correlation-induced stochastic synchrony 

– networks often oscillate with oscillatory inputs 

– but also with a shared, stochastic input 
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The origin of brain 
oscillations Network synchronization 

Common, 
pure noisy 
input 

Intrinsic oscillator, F0 

Intrinsic oscillator, F0 

synchronisation 



• Clustering 

– Globally oscillating networks can break into a small 
number of oscillating clusters of neurons, firing 
intermittently 
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The origin of brain 
oscillations Network architecture 



• Complex network with long range connections 
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The origin of brain 
oscillations Network architecture 



Spatially structured network 

– Can produce propagating waves.  

– Wave propagation (evidence at multiple scale) due to neighboring  
connectivity 
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The origin of brain 
oscillations Network architecture 



Measured oscillations reflect 
filtered neural activity 

• LFP: weighted average of 
(somatodendritic) activity in a 
100-200 μm radius 

• Multi Unit Activity (MUA) = 
spiking pattern 

• How the two are related? => not 
clear 
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Buzsaki Nat. Neurosci. 2012 

The origin of brain 
oscillations From spikes to sensors 

Scalp EEG 

LFP (local field potential) 

MUA 

Spikes 



F. Meyniel CA4 
22 

Functional implication 
for cognition A mechanistic account on neural processes 

The phase code 
Oscillations carry additional information: time 

Symmetric response in Hz 

Asymmetric response 
relative to theta phase 

Cf. cours Karim Benchenane 

Wang Physiol Rev 2010 
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Functional implication 
for cognition A mechanistic account on neural processes 

Precise timing for memory 
Synaptic plasticity depends on spike timing (STDP). 

Feldman Neuron 2012 
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Functional implication 
for cognition A mechanistic account on neural processes 

Oscillations depend on the brain architectures 
- Oscillation can be layer specific: 

- beta (15-30Hz): deep layers 
- gamma (> 40Hz): superficial layers 

- Feedback & feed-forward connections are also layer-
specific: 

- Feed-forward  
- bottom-up signaling 
- Local processing 
- gamma 

- Feed-back  
- top-down signaling 
- Long range 
- Beta (can modulate top-down signaling). 

Wang Physiol Rev 2010 
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Functional implication 
for cognition Rhythmicity of cognitive processes 

Attention selection in a perceptive stream  
Low frequencies (delta) modulate the excitability of local neuronal assemblies. 

Lakatos Science 2008 
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Functional implication 
for cognition Rhythmicity of cognitive processes 

Discreetness of cognitive processes and 
pulsed-inhibition 
- Many cognitive processes are rhythmic. E.g. in 

perception: saccades, sniffing, … 
- The oscillation amplitude can control the 

duration allowed for processing: pulsed 
inhibition with alpha rhythm 

Jensen TICS 2012 
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Functional implication 
for cognition Rhythmicity of cognitive processes 

Communication-through-coherence in the gamma band 
- Coherence between level can select information (functional switch) 
- Gamma rhythmicity: 

- Dendritico-somatic summation at the neuronal time scale: 10 ms (coincidence 
detection) 

- Periodic inhibition gate the synaptic efficacy (gain modulation) 

Fries Annu. Rev. Neurosci 2009  
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Functional implication 
for cognition Rhythmicity of cognitive processes 

Cross-frequency coupling between high and low frequency 
-high frequency (gamma) = processing 
- Low frequency (delta) = attention selection 

Impact on behavioral 
performance 
-> causality? 

Lakatos Science 2008 
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Functional implication 
for cognition Case study: beta oscillations 

Meyniel & Pessiglione 2013 

Jasper & Penfield 1949 Motor beta synchrony gates 
motor change 
- High beta synchrony when steady 

(either during the effort or during 
rest) 

- For voluntary actions, the 
reduction of synchrony precedes 
the action onset 
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Functional implication 
for cognition Case study: beta oscillations 

No treatment Levodopa (dopamine agonist) 

Akinesia, bradykinesia Alleviated motor symptoms 

High beta synchrony prevent movement production 
- Evidence from Parkinson disease patient.  
- Evidence in patient and healthy participant that trial-to-trial variability in motor fluency 

depends on the trial-to-trial variability in beta synchrony. 

Brown J Neurosci 2001 



F. Meyniel CA4 
31 

Functional implication 
for cognition Case study: beta oscillations 

Pogosyan Current Biol. 2009 

Entrained beta oscillations slow 
movement 
- Entrained oscillation: rhythmic 

transcranial magnetic stimulation (TMS) 
- Manipulation = evidence of causality. 
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Functional implication 
for cognition Case study: beta oscillations 

High beta synchrony during top-down processing 
- Fluctuations of beta band synchrony reflect fluctuations of attention 
- Those fluctuations shape our perception 
- Beta band synchrony at the network level, potentially revealing functional connectivity 
 

Siegel Nat. Neurosci Rev. 2012 

MEG 

EEG 

Between 
DLPFC & 
PCC 

Between[ DLPFC, PCC] & MT 
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Functional implication 
for cognition Case study: beta oscillations 

Engel & Fries Curr. Op. in Neurobiol. 2010 

Proposal: Beta band synchrony promotes the status quo 
beta-band activity maintains the current sensorimotor or cognitive 
state  



Take home messages 

• Oscillations and synchrony arise from intrinsic properties of 
synapses, neurons and networks 

• Oscillations and synchrony change with many cognitive 
processes 

• The diversity of oscillations is related to the diversity of 
networks and functions 

• There is computational and experimental evidence that 
functional changes in neural networks drive changes in 
oscillations and synchrony 

• Oscillations give an insight at the computational level, i.e. 
between the neural and behavioral levels.  
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