Genetic guidance, development and plasticity of the brain

GDP1, 2012-11-26, Florent Meyniel

Morphogenesis: from a single cell to a complex brain

- Formation of the neural tube
- Differentiation of cephalic vesicles
- Expansion of the telencephalon / diencephalon
- Characteristics of the adult brain

Morphogenesis: from a single cell to a complex brain Formation of the neural tube

M. Imbert

Morphogenesis: from a single cell to a complex brain Formation of the neural tube

4

Morphogenesis: from a single cell to a complex brain Differentiation of cephalic vesicles

GDP1 F. Meyniel 2012-11-26

Morphogenesis: from a single cell to a complex brain Differentiation of cephalic vesicles

Morphogenesis: from a single cell to a complex brain Expansion of the telencephalon / diencephalon

• Polarization

• Laminar organization of the cerebral cortex

Les principaux types de neurones corticaux (d'après Hendry et Jones, 1981).

NB: more inhibitory interneurons in primates than in other animals

GDP1 F. Meyniel 2012-11-26

Hodology

Hagmann, 2003, NeuroImage

Stahl's Essential Psychopharmacology, 3rd Ed, 2008

Surface morphology and genetic relatedness

MZ-DZ twin design:

- The local cortical surface size is regressed onto A (additive genetic + non additive influence) and E (nonshared environmental influence (common influence assumed null).
- Correlation Ai Aj between all pair of local cortical area
- Unconstrained for space hierarchical clustering
- => hierarchical genetic organization, revealed with a functional mapping.

Neocortex

The human brain transcriptmone: the Allen Brain Atlas (<u>www.brain-map.org</u>) Hawrylycz et al Nature 2012 (2 'and a half' male brain)

Low internal variation in gene expression in the neocortex

=> Something else than gene involved?

The developmental processes

- Introduction
- Setting components: The radial unit hypothesis
- Genetic patterning
- Activity dependent patterning

The developmental processes Introduction

Intrinsic vs. extrinsic determinants: Protomap vs. protocortex

Grove & Fukuchi-Shimogori 2003 Annu. Rev. Neurosci

Mechanism and storytelling

http://rakiclab.med.yale.edu/pages/radialMigration.php Based on Rakic 1988 Science (primates)

TR: thalamic radiation

NB, MA: basal ganglia & monoamine projection CC: inter-hemispheric connection (corpus callosum) SV: ventricular zone IZ: intermediate zone SP: subplate MZ: marginal zone

Table 1 | Summary of interneuron neurochemical subgroup characteristics in mice

Neurochemical marker	Relative % of GABA+ cells	Characteristic morphology	Axonal targeting on projection neurons*	Intrinsic physiology [‡]
Somatostatin	~30%	Smallbasket	Proximal dendrites/soma	RSNP
		Martinotti	Distal dendrites	BSNP
Parvalbumin	~50%	Large basket	Proximal dendrites/soma	FS
		Nestbasket	Soma	FS/RSNP
		Chandelier	Axon initial segment	FS
Calretinin	~15%	Smallbipolar	Proximal dendrites; also, other GABA+ cells	RSNP/BSNP

Wonders NNR 2006

- MGE (medial ganglionic eminence) -> somatostatin & parvalumin interneurons (Nkx2.1)
- dLGE (dorso-lateral GE) -> calretinin (ER81)
- vLGE (ventral) -> undetermined subgroup

Breaking news! Model still debated...

Study by Franco Science 2012, reported by Marin Nature 2012

=> The radial development could endow columns with a functional specificity

- Constraints on genetic expression to determine the cellular fate:
 - Transcription factors
 - RNA splicing
 - Post-transcriptional gene silencing
 - ... see introduction to genetics
- Result: differentiation of cells (corollary of specification) restricts progressively the range of fates.

• The example of dorso-ventral regionalization

• Regionalization & function of morphogens

GDP1 F. Meyniel 2012-11-26

GDP1 F. Meyniel 2012-11-26

Neuronal subtype specification in the cerebral

cortex

Molyneaux NNR 2007

E Cortical cues

establish intra-areal

Sur 2005 Science

Projection patterns & axon guidance

Subcortical cues

establish inter-areal

The developmental processes Genetic patterning

The developmental process Activity-dependent patterning

Ackman 2012 Nature

Retinal waves propagate to colliculi (and V1, not shown) in P5 mouse (eye openning > P10). Pharmacological blocking of waves => impaired visual maps.

The developmental processes Activity-dependent patterning

Table 1 | Summary of important features of spontaneous network activity recorded in rodents

	Retina			Spinal cord		Hippocampu	s	Cochlea	Cerebellum
Stage	E17-P1	P1-P10	P10-P14	E12-E15	E15– E18	E18-P5 (SPAs)	P3–P10 (GDPs)	P7-P10	P4-P6
Description of projection neuron firing patterns	Bursts that propagate over a limited region of the GCL	Bursts that propagate over a large region of the GCL	Clusters of bursts that propagate over a large region of the GCL	Bursts of oscillatory activity that propagate within and between segments	Bursts of oscillatory activity that propagate within and between segments	Ca ²⁺ spikes correlated over few pyramidal cells	Bursts correlated across CA3 and CA1 subfields	Bursts of action potentials; correlation pattern unknown	Travelling waves of action potentials that propagate from the apex to the base of cerebellar lobules
Inter-event interval	30 s	1–2 min	1 min	2–3 min	1 min	8 s	3–10 s	5–60 s	100 ms
Mechanisms of initiation	Unknown	Spontaneous Ca ²⁺ spikes in starburst amacrine cells	Unknown	Network interactions	Network interactions	Spontaneous Ca ²⁺ spikes in pyramidal cells	Intrinsic bursts in CA3 interneurons	Unknown	Spontaneous firing in Purkinje neurons
Primary source of depolarization	Gap junctions	nAChRs	iGluRs	nAChRs, GABA _A Rs and Gly receptors	iGluRs, nAChRs, Gly receptors and GABA _A Rs	L-type Ca ²⁺ channels and gap junctions	GABA _A Rs and NMDARs	ATP release from supporting cells in Kölliker's organ	GABA _A Rs
State of network at end	Maturation of cholinergic circuit	Maturation of glutamatergic circuits	Onset of vision	Loss of requisite role for nAChR signalling	GABA signalling becomes inhibitory	Maturation of GDP circuits	GABA signalling becomes inhibitory	Kölliker's organ disappears	GABA signalling becomes inhibitory
Recorded in vivo	No	Yes ³	Yes ^{26, 27}	Yes (chick ²⁹)	Yes (chick ²⁹)	No	Yes ¹²⁵	Yes ⁴¹	No
			DI	I	2010				

The developmental processes Activity-dependent patterning

The developmental process Activity-dependent patterning

The canonical example of ocular dominance columns

Katz 2002 NNR

The developmental processes Activity-dependent patterning

The canonical example of ocular dominance columns

Plasticity of the brain

- Plasticity is crucial for shaping the brain
- Critical period and interactions with the environment: the case of the prefrontal cortex
- Plasticity in the adult brain
- Adult neo-neurogenesis?

Plasticity of the brain Plasticity is crucial for shaping the brain

GDP1 F. Meyniel 2012-11-26

Plasticity of the brain Plasticity is crucial for shaping the brain

Plasticity of the brain Plasticity is crucial for shaping the brain

Plasticity of the brain

Critical periods and interaction with the environment: the case of the prefrontal cortex

Period	Kind of circuit	Type of activity
Neonate	Permanent, with transient elements	Sensory-driven, centered on layer V
2-6 month	Permanent with transient elements	Sensory-driven, columnar processing
7-12 month	Initial cognitive circuit	Environmental driven, local circuit
12-24 month	Cognitive	Socially driven, centered on layer III

Plasticity of the brain

Critical periods and interaction with the environment: the case of the prefrontal cortex

GDP1 F. Meyniel 2012-11-26

Plasticity of the brain Plasticity in the adult brain

Feldman 2005 Science

Plasticity of the brain Plasticity in the adult brain

White matter changes (DTI)

Large scale axonal remodeling - changes in anisotropy

Plasticity of the brain Adult neo-neurogenesis?

- In humans: new neurons generated throughout life in the hyppocampal region
- In rodent: new neurons in the olfactory bulb
- However, the 'big picture': manage a given pool of neurons throughout life.

Take-home messages

- Morphogenesis and regionalization:
 - Is under dynamic genetic control (intrinsic factors)
 - Depends on spontaneous electrical activity (extrinsic factors)
 - Extrinsic and intrinsic factors are complementary & interact
 - Involves limited but crucial pruning
- The critical period is characterized by massive plasticity
 - Required to consolidate the architecture
 - Shaped by interaction with the environment (evoked activity)
 - Is limited in time (followed by a freezing of the system)
- Plasticity is much important
 - During the development, in particular for the transient vs. remnant structures
 - During the adulthood (but the brain plasticity of adult << during development)
 - In both cases: crucial for the adaptation to the environment

2012 Nobel Prize: induced pluripotent cells

- Development progressively restricts cellular fates
- Can the clock be reversed?
- Induced pluripotent cell (iPS): specialized cell that are induced pluripotent (i.e. able to undergo development once again!).
- Gurdon: put mature cell nucleus in an egg to (little chance though...) make it pluripotent
 - mature cells keep their whole genetic package.
 - But: does not work in humans...
- Yamanaka: had some genes expressed during development added in mature cells (4 are enough) to induce cells to become embryonic stem cells
 - Developed in rodent
 - Now works in humans

2

- Gurdon: put mature cell nucleus in an egg to make it pluripotent (little chance though...)
 - Evidence that mature cells keep their whole genetic package.
 - But: it does not work in humans...

Gurdon JB (1962). **Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles**. *J Embryol Exp Morph* 10:622-640.

Xenopus laevis

Ovule énucléé

- Yamanaka: had some genes expressed during development added in mature cells (4 are enough) to induce cells to become embryonic stem cells
 - Developed in rodent
 - Now works in humans

Takahashi K and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 126:663-676.

> Mice - 2006 Humans - 2007

Decreased neuronal connectivity in SCZD hiPSC neurons.

Control

LV-SYNP-HTG

βIII-tubulin

SCZD

Spread of rabies via synaptic contacts => estimate of connectivity

Tubulin to localize neurites

Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH. **Modelling schizophrenia using human induced pluripotent stem cells.** *Nature*. 2011 May 12;473(7346):221-5.

Decreased neuronal connectivity in SCZD hiPSC neurons.

Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH. **Modelling schizophrenia using human induced pluripotent stem cells.** *Nature*. 2011 May 12;473(7346):221-5.

References

- Acknowledgements: Previous GPD1 courses by Elodie Cauvet and Sonia Garel, Franck Ramus
- Major references:
 - In M. Gazzaniga, The cognitive neurosciences, 4th edition
 - Rakic, Arellano & Breunig, Development of the primate cerebral cortex (chap. 1)
 - Kostovic & Judas, Early development of neuronal circuitry of the human prefrontal cortex (chap. 2)
 - Imbert, Traité du cerveau, chap. 2 (Mise en place du cerveau)
 - Martin, Neuroanatomy, text and atlas, 3rd edition, chap. 3 (development of the central nervous system)
 - Science special issue 'systems-level brain development' (november 2005, vol 310, p805)
- Other references
 - Katz & Crowley, Development of cortical circuits: lessons from ocular dominance columns (*Nat. Neurosci. Rev.* 2002 vol 3, p34)
 - Lupo, Harris & Lewis, Mechanisms of ventral patterning in the vertebrate nervous system (*Nat. Neurosci. Rev.* 2006 vol 7, p103)
 - Molyneaux et al, Neuronal subtype specification in the cerebral cortex (*Nat. Neurosci. Rev.* 2007 vol 8 p 427)
 - Blankenship & Feller, Mechanisms underlying spontaneous patterned activity in developing neural circuits (*Nat. Neurosci. Rev.* vol 11 p 18)